Crystal structure of rhodopsin: implications for vision and beyond.
نویسندگان
چکیده
A heptahelical transmembrane bundle is a common structural feature of G-protein-coupled receptors (GPCRs) and bacterial retinal-binding proteins, two functionally distinct groups of membrane proteins. Rhodopsin, a photoreceptor protein involved in photopic (rod) vision, is a prototypical GPCR that contains 11-cis-retinal as its intrinsic chromophore ligand. Therefore, uniquely, rhodopsin is a GPCR and also a retinal-binding protein, but is not found in bacteria. Rhodopsin functions as a typical GPCR in processes that are triggered by light and photoisomerization of its ligand. Bacteriorhodopsin is a light-driven proton pump with an all-trans-retinal chromophore that photoisomerizes to 13-cis-retinal. The recent crystal structure determination of bovine rhodopsin revealed a structure that is not similar to previously established bacteriorhodopsin structures. Both groups of proteins have a heptahelical transmembrane bundle structure, but the helices are arranged differently. The activation of rhodopsin involves rapid cis-trans photoisomerization of the chromophore, followed by slower and incompletely defined structural rearrangements. For rhodopsin and related receptors, a common mechanism is predicted for the formation of an active state intermediate that is capable of interacting with G proteins.
منابع مشابه
Future-oriented implications of the resilience theory for Iran public libraries
Target: In order to play their role in social developments, public libraries face technological changes and unknown issues that can affect their identity and mission .In reference to the application of novel approaches to reconceptualize the mission of public libraries, this study tries to employ resilience theory to craft a vision for the future of Iran public libraries. Method: This study u...
متن کاملFirst principles predictions of the structure and function of g-protein-coupled receptors: validation for bovine rhodopsin.
G-protein-coupled receptors (GPCRs) are involved in cell communication processes and with mediating such senses as vision, smell, taste, and pain. They constitute a prominent superfamily of drug targets, but an atomic-level structure is available for only one GPCR, bovine rhodopsin, making it difficult to use structure-based methods to design receptor-specific drugs. We have developed the MembS...
متن کاملCrystal structure of rhodopsin: a template for cone visual pigments and other G protein-coupled receptors.
The crystal structure of rhodopsin has provided the first three-dimensional molecular model for a G-protein-coupled receptor (GPCR). Alignment of the molecular model from the crystallographic structure with the helical axes seen in cryo-electron microscopic (cryo-EM) studies provides an opportunity to investigate the properties of the molecule as a function of orientation and location within th...
متن کاملG protein-coupled receptor drug discovery: implications from the crystal structure of rhodopsin.
G protein-coupled receptors (GPCRs) are a functionally diverse group of membrane proteins that play a critical role in signal transduction. Because of the lack of a high-resolution structure, the heptahelical transmembrane bundle within the N-terminal extracellular and C-terminal intracellular region of these receptors has initially been modeled based on the high-resolution structure of bacteri...
متن کاملBatch crystallization of rhodopsin for structural dynamics using an X-ray free-electron laser
Rhodopsin is a membrane protein from the G protein-coupled receptor family. Together with its ligand retinal, it forms the visual pigment responsible for night vision. In order to perform ultrafast dynamics studies, a time-resolved serial femtosecond crystallography method is required owing to the nonreversible activation of rhodopsin. In such an approach, microcrystals in suspension are delive...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current opinion in structural biology
دوره 11 4 شماره
صفحات -
تاریخ انتشار 2001